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Abstract Decentralized adaptive agents/controller are able to operate in autonomous regimes,
where they estimate model of their own neighborhood and design their control strategies with
respect to their local aims. When each agent designs its strategy using only its model, the
resulting control will be suboptimal since local models do not allow prediction of consequences
of actions of the neighbors. Information about expected future trajectory as perceived by the
neighbor can be obtained by means of communication. The task is to design a method of
control strategy design that makes use of this information to improve the overall performance.
In this paper, we propose to use the predictor to modify the loss function of the receiving agent.
Informal justification of the approach is presented and it properties are illustrated in simulation
experiments with decentralized LQG control.
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1. INTRODUCTION

This work is concerned with cooperative control strategy
design for autonomous agents. This work is motivated by
decentralized feedback control of traffic light signaliza-
tion in urban areas, Homolová and Nagy (2005); Šmı́dl
and Přikryl (2006). The current implementation of traffic
light control is based hierarchical approach where some
parameters (such as time offsets for a green wave) are set
centrally but each intersection controller has certain level
of autonomy to adjust its control strategy according to
sensor readings available at that intersection. Currently,
the level of autonomy is rather minor to prevent non-
cooperative behavior which might appear since the con-
trollers are not communicating to each other. An example
of traffic control solution with higher level of autonomy
is represented by the multi-agent approach, Roozemond
(2001). In this approach, the agents (intersection con-
trollers and area controllers) design predictors of traffic
situation and design certainty equivalent control strategy
using expected values of the predictions. The uncertainty
of the predictors is mostly ignored, which is inadequate in
such highly uncertain system as traffic flow in urban areas.

In order to improve handling of uncertainty, we make use
of the multiple-participant decision-making theory, Kárný
and Guy (2004); Kraćık (2009). In this approach, the con-
trol strategy is based on design of the autonomous control
strategy, however it is assumed that that communication
with the neighbors may provide additional information.
This information allows each agent to modify its key ele-
ments of the control strategy design (probabilistic model,
and the loss function) to decrease its expected loss. In
this approach, however, only local loss functions of each
agent are considered. This is not a suitable assumption in
the traffic control domain where the task is to optimize
overall performance of the whole system. However, the

overall improvement should not be achieved at the price
of excessive loss in some areas. This makes the problem
related to the domain of decentralized adaptive control
which is well developed for deterministic systems, Ioannou
(Apr 1986), or systems with stochastic inputs, Liu et al.
(2007). However, models of the traffic network typically do
not fit into commonly studied models in this approach.

To address the problem, we seek a combination of these
three approaches that allows: detailed probability model-
ing of the multiple-participant approach, reconfigurabil-
ity and intuitive appeal to field engineers of the multi-
agent approach, and global properties (such as stability)
of the decentralized adaptive control. In this paper, we
investigate the following combination: (i) we develop an
autonomous control strategy design based on probabilistic
model of an agent, (ii) we develop a control strategy design
method for the global system, and (iii) we modify the
autonomous method to match the globally designed one
as close as possible. At present, validation of success of
the approach is tested only by simulation.

Following the multiple-participant approach, the agents
are using Fully Probabilistic Control Design (FPD), Kárný
(1996), as their control strategy design methodology. An
independently developed variant of this approach was also
used in multi-agent setup in van den Broek et al. (2008).
The original FPD was extended to multi-agent scenario
by exchange of multi-step predictive probability densities
between agents in Šmı́dl and Andrýsek (2008). The multi-
step predictors were merged with local predictors and the
FPD was performed with respect to the merged density.
However, this approach exhibits slow convergence and ex-
cessive computational demand as the multi-step predictor
in the form of Gaussian density grows quadratically with
the control horizon, and the time needed to process this
information grows even more rapidly. Therefore, we pro-



pose a new scheme which is based on modification of the
loss function of the receiving agent.

The paper is organized as follows. Review of the fully
probabilistic control design for a centralized solution is
presented in Section 2. Extension of this approach to
decentralized scenario is presented in Section 3, where the
main result is presented. An illustrative example of the
new strategy is presented in Section 4.

2. REVIEW OF CENTRALIZED PROBABILISTIC
ADAPTIVE CONTROL

Consider the following probabilistic model of a stochastic
system:

yt ∼ f(yt|ut, dt−∂:t−1, θt). (1)
θt ∼ f(θt|θt−1). (2)

Here, vector yt denotes output of the system, ut is the
vector of inputs, dt is their aggregation dt = [y′t, u

′
t]
′,

dt−∂:t−1 = [dt−∂ , . . . , dt−1] is a history of past ∂ obser-
vations, and θt is an unknown time-variant parameter,
its evolution being modeled by (2). In the sequel, we
replace dt−∂:t−1 by more general term d1:t−1 for brevity.
However, it is expected that all predictors and target pdfs
will have fixed length statistics. The task is to design
control strategy ut = ut(dt−∂:t−1), application of which
yields output as close to the desired values as possible.
Since parameters of the system are unknown and time-
varying, we will design the control strategy using model-
based adaptive control. This approach can be decomposed
in three steps: (i) parameter estimation, (ii) prediction, in
which the estimated parameters are used to build predic-
tors of future behavior, and (iii) dynamic programing (DP)
optimizing the control strategy using predictors from the
prediction step.

Estimation: The model can be estimated using Bayesian
filtering, Doucet et al. (2001), by recursive update of
posterior density on parameters

f(θt|d1:t) ∝
∫
f(yt|ut, d1:t, θt−1)f(θt|θt−1)dθt−1,

where ∝ means equality up to normalizing constant.

Prediction: for given control law, the h-step predictor of
yt is obtained by marginalization:

f(y(h), u(h)|d1:t) =
∫
f(θt|d1:t)

[ t+h∏
τ=t+1

f(yτ |uτ , d1:τ , θτ )f(uτ |d1:τ )f(θτ |θτ−1)
]
dθt:t+h (3)

Here, y(h) ≡ yt+1:t+h denotes future h-step output trajec-
tory. Evaluation of (3) is often either intractable or difficult
to use in the subsequent steps. Hence, it can be replaced
by the following approximation

f(y(h)|u(h), d1:τ−1) ≈
h∏

τ=t+1

f(yτ |uτ , d1:τ−1, θ̂τ )f(uτ |d1:t−1, θ̂τ ). (4)

Here, θ̂τ is a point estimate of the parameters θτ . This
approximation is known as certainty equivalence.

DP: Control strategy for system (1) can be designed using
Fully Probabilistic Design (FPD) Kárný (1996). FPD
minimizes future expected loss in the form of Kullback-
Leibler divergence between the predicted and the target
pdf of future trajectory.

f(u(h)|y(h−1)d1:t) (5)

= arg min
f(u(h)|y(h−1),d1:t)

D
(
f(d(h)|d1:t)

∣∣∣∣∣∣g(d(h))
)
. (6)

= arg min
f(u(h)|y(h−1),d1:t)

E

[
ln
f(d(h)|d1:t)
g(d(h)|d1:t)

| d(h)

]
. (7)

Here, E [· | ·] denotes conditional expected value with re-
spect to pdf (3), D(·||·)is the Kullback-Leibler divergence,
f(d(h)|d1:t) is a predictive pdf of future outputs (3), and
g(d(h)|d1:t) is the desired (target) pdf of the future outputs.
This non-standard technique of control strategy design
allows analytical solution in the same backward-processing
way as in dynamic programming, Bertsekas (2001).

Solution of (5) can be found explicitly in the form

f
(
uτ |d1:τ−1

)
= g(uτ |d1:τ−1)

exp[−ω(uτ , d1:τ−1)]
γ(d1:τ−1)

, (8)

for τ = t + h, . . . , t + 1, where function ω(·) and γ(·) are
recursively evaluated as

ω(uτ , d1:τ−1) = E

[
ln

f(yτ |uτ , d1:τ−1)
γ(d1:τ )g(yτ |uτ , d1:τ−1)

| yτ
]
, (9)

γ(d1:τ−1) =
∫
g(uτ |d1:τ−1) exp[−ω(uτ , d1:τ−1)] duτ ,

(10)
for τ = t+ h, . . . , t+ 1, initiated at

γ(d1:t+h) = 1. (11)
For linear Gaussian models model the mean value of (5) is
equivalent to the control law of linear quadratic Gaussian
(LQG) method.

2.1 Special case of Linear Quadratic design

LQG control arise as a special case of FPD (8)–(11), when
both the model and the target pdfs are Gaussian with
linear function of their mean value:

f(yt|ut, d1:t−1) =N (θψt, R),

g(yt, ut|d1:t−1) =N
([

yt
ut

]
,

[
Qy

Qu

])
. (12)

Here, θ is a vector of known (estimated) parameters, and
ψ is a function of time-delayed values of yt and ut.

Substituting (12) into (9) for γ(d1:t+h) = 1 yields:

ω(ut+h, d1:t+h−1) =
1
2
[

ln(QyR−1)−dim(y)+ tr(RQ−1
y )

+ (θψt − yt)′Q−1
y (θψt − yt)

]
, (13)

γ(d1:t+h−1) =
∫

exp
(
−1

2
(θψt − yt)′Q−1

y (θψt − yt)
)

∫
exp

(
−1

2
(ut − ut)Q−1

u (ut − ut)
)
, (14)

where the first three terms in ω() are independent of ut
and yt making them irrelevant. The recursion from t + h



Autonomous:

ω(ui,τ , d1:τ−1) = E
[

ln
f(yie,τ |y∩,τ , ui,τ , d1:τ−1

[i] )

g(yieτ |y∩,τ , ui,τ , d1:τ−1
[i] )

+ ln
f(y∩,τ |ui,t, d1:τ−1

[i] )

g(y∩,τ |ui,t, d1:τ−1
[i] )

− ln(γ(y[i],τ , d1:τ−1
[i] ))

∣∣∣ y[i]τ]. (15)

Global:

ω(uτ , d1:τ−1) = E
[

ln
f(yje,τ |yie,τy∩,τ , uτ , d1:τ−1)
g(yjeτ |yie,τ , y∩,τ , uτ , d1:τ−1)

+ ln
f(yie,τ |y∩,τ , uτ , d1:τ−1)
g(yieτ |y∩,τ , uτ , d1:τ−1)

+

+ ln
f(y∩,τ |uτ , d1:τ−1)
g(y∩,τ |uτ , d1:τ−1)

− ln(γ(yτ , d1:τ−1))
∣∣∣ yτ]. (16)

Cooperative:

ω(ui,τ , d1:τ−1) = E
[

ln
f(yie,τ |y∩,τ , ui,τ , d1:τ−1

[i] )

g(yieτ |y∩,τ , ui,τ , d1:τ−1
[i] )

+

+ ln
f(y∩,τ |ui,τ , d1:τ−1

[i] )

gα(y∩i,τ |ui,τ , d1:τ−1
[i] )f1−β(y∩,τ |uj,τ , d1:τ−1

[j] )
− ln(γ(y[i],τ , d1:τ−1

[i] ))
∣∣∣ y[i]τ]. (17)

to t yields reveals that ut is equivalent to LQG designed
strategy with loss function given by the quadratic form in
exp of (13), and ln γ() in the role of the Bellman function
Kárný (1996).

3. EXTENSION TO DECENTRALIZED
STOCHASTIC CONTROL

In decentralized control, the global control task is split
between agents where each agent is assigned to control
only a sub-set of all considered inputs using only locally
available data and models. For simplicity, we will consider
only two agents, A1 and A2. Data space of the ith
agent, d[i],t, is divided into its ‘private’ variables die,t and
commonly available variables d∩,t. The full data set is then
dt = [d1et, d∩t, d2et]. Input spaces of both agents are non-
overlapping, ut = [u1,t, u2,t].

The task is to design for each agent: (i) an autonomous
control strategy, and (ii) a cooperative cooperative strat-
egy that outperforms the autonomous one in terms of
global loss. Moreover, the cooperative control strategy
must remain of the same complexity as the autonomous
one. We will address the task as follows:

(1) Autonomous control strategy design for both agents
and the global control strategy is developed.

(2) Each local autonomous strategy is interpreted as an
approximation within the global strategy.

(3) The global control strategy is restructured such that
application of the same approximation as in step 2.
yields cooperative strategy.

(4) Performance of the new cooperative strategy is stud-
ied in simulation.

3.1 Autonomous regime

In this paper, we consider only agents, A1 and A2, that
model only variables they explicitly observe, i.e. y[1] and
y[2], respectively. The reason for this is twofold: first, by
considering some variables of the neighbors in its model,
the agent would significantly increase the complexity of its
models and the imposed computational load; second, when
reconfiguration is allowed, the structure of the neighbor-

hood would change and it would be necessary to rebuild
the internal model.

We assume that each agent has its model and is able to
construct its own predictors:

f(y(h)
[i] , u

(h)
i |d

1:t) =
t+h∏
τ=t+1

f(y[i],τ , ui,τ |d1:τ−1
i ),

=
t+h∏
τ=t+1

f(yie,τ |y∩,τ , ui,τ , d1:τ−1
[i] )fi(y∩,τ |ui,τ , d1:τ−1

[i] )

f(ui,τ |d1:t−1). (18)
Each agent is supposed to have its local aims

g(y(h)
[i] , u

(h)
i |d

1:τ ) =
t+h∏
τ=t+1

g(yie,τ |y∩,τ , ui,τ , d1:τ−1
i )

g(y∩,τ |ui,τ , d1:τ−1
i )g(ui,τ |d1:τ−1

i ). (19)
The autonomous control strategy is be designed using (8)–
(11), where ω() for this case is displayed in (15).

3.2 Centralized control

A hypothetical agent A constructs its global predictor,
designs global control strategy using (16) and its subse-
quent integration via (10). The result is a globally optimal
strategy. This strategy can not be designed under the
incomplete information structure outlined in the introduc-
tion and must be approximated.

The autonomous strategy is can be interpreted as an
approximation of the global design in (16). Note that the
autonomous control arise when all densities model ling
private data of a neighbor are dropped, and predictors
that are conditioned on the data of the neighbor are
approximated as follows:

ln
f(yie,τ |y∩,τ , uτ , d1:τ−1)
g(yieτ |y∩,τ , uτ , d1:τ−1)

≈ ln
f(yie,τ |y∩,τ , ui,τ , d1:τ−1

[i] )

g(yieτ |y∩,τ , ui,τ , d1:τ−1
[i] )

.

(20)
The same approximation arise for the jth agent under
the use of different order of the chain rule in (16). The
parallel run of both autonomous strategies may result in
poor performance since predictors in each strategy may



yield different predictions. One way to achieve cooperative
behavior is resolution of the conflict in predictions. A
solution offered in Šmı́dl and Andrýsek (2008) is to harmo-
nize the incompatible predictors using tools of probability
combination, Genest and Zidek (1986).

3.3 Decentralized control

Note that by running two autonomous strategies in par-
allel, the common part of the loss, ln f(y∩) − ln g(y∩) in
(16), is optimized twice. A heuristic solution would be to
split this element in two parts, where each agent optimizes
only one of them. This solution may be extended further
as follows:

ln
f(y∩|d)
g(y∩|d)

= ln
f(y∩|d)f(y∩|d)
g(y∩|d)f(y∩|d)

= ln
f(y∩|d)f(y∩|d)

gα(y∩|d)g1−α(y∩|d)f1−β(y∩|d)fβ(y∩|d)
(21)

Here, only symbolic condition d was used in place of proper
conditions in (16) for brevity. Similarly to the autonomous
projection, each element in (21) can be replaced by an
approximation of the kind of (20). Here, we make more
complex substitutions:

f(y∩,τ |uτ , d1:τ−1)
g(y∩,τ |uτ , d1:τ−1)

≈

≈ ln
f(y∩,τ |ui,τ , d1:τ−1

[i] )

gα(y∩,τ |ui,τ , d1:τ−1
[i] )fβ(y∩,τ |uj,τ , d1:τ−1

[j] )

+ ln
f(y∩|uj,τ , d1:τ−1

[j] )

g1−α(y∩|uj,τ , d1:τ−1
[j] )f1−β(y∩|ui,τ , d1:τ−1

[i] )
(22)

By a heuristic choice, the ith agent approximate only the
first part, yielding (17). The density f(y∩,τ |uj,τ , d1:τ−1

[j] )
is understood as a fixed quantity obtained from the jth
agent by a communication channel. Equation (22) may
reveal different scenarios, based on the value of tuning
knobs 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

We note the following:

• Structure of dependence is assigned by values of α, β.
For example, for α = 1, β = 0, the ith agent designs
its own autonomous strategy, while the jth agent
optimizes its strategy with ith predictors as its target.
Their roles are opposite for α = 0, β = 1.

• For non-zero values of both α and β, equations
(17) for i and j form a set of implicit equations.
If f(y∩i|·) is known, f(y∩j |·) is uniquely determined
and vice versa. Therefore a solution can be found via
successive approximations yielding a communication
mechanism that correspond to negotiation in multi-
agent systems.

• When values of α and β are globally assigned, the
loss associated with the cooperative solutions should
approach that of the global solution. However, we may
consider also scenarios, when the agents have freedom
to choose α, β to their liking. Indeed, the autonomous
strategy (15) correspond to one such choice.

2

Traffic
Agent

1

Traffic
Agent

u1,t

θ2,t

y2∩,t

y1∩,t

u2,t

θ1,t

Figure 1. Two traffic intersections with vector of overlap-
ping observations, y∩ = [y1∩, y2∩]. Inputs u1, u2 are
proportions of the green light signal in the control
period. Internal variables θ1, θ2 are lengths of the
queues of waiting cars. These queues are not directly
observed and must be estimated.

• Extending agents freedom further, we can consider
incompatible targets gi(y∩) 6= gj(y∩). In that case,
cooperation may be achieved using the same mecha-
nism as in (21), yielding

ln
f(y∩)
g(y∩)

= ln
f(y∩,i)

gαϕ(y∩i)gα(1−ϕ)(y∩j)fβ(y∩,j)
+ (23)

+ ln
f(y∩,j)

g(1−α)ϕ(y∩i)g(1−α)(1−ϕ)(y∩j)f1−β(y∩,i)
• Note that the key operation in this scheme is prob-

ability combination technique known as geometric
combination, Genest and Zidek (1986). Specifically,
solution (23) also arise when the target densities are
harmonized using geometric combination. However,
extending agent’s freedom to assign their own ϕ will
depart from that solution.

• Extension to more than two agents will result in
geometric combination of more densities.

4. ILLUSTRATIVE EXAMPLE

Consider the following 3-output 2-input system:
f(yt|ψt,Σ) = N (θψ,Σ), (24)

where
yt = [y1,t, y2,t, y3,t]′,
ψt = [y1,t−1, y2,t−1, y3,t−1, u1,t, u1,t−1, u2,t, u2,t−1]′,

θ =

[ 0.8 0.2 0 −0.3 0.4 0 0
−0.2 0.5 −0.8 0.2 0.5 −0.2 −0.5

0 1.1 −0.5 0 0 −0.2 0.3

]
. (25)

The target density is stationary

g(yt)g(ut) =

N

([ 0
1
0

]
,

[ 0.1
0.1

0.1

])
N
([

0
0

]
,

[
0.1

0.1

])
, (26)

corresponding to a standard quadratic loss of LQG (14),
with the choice of penalization matrices 10I3 and 10I2 for
yt and ut, respectively. Here, In denotes identity matrix of
dimension n. This example is a greatly simplified model of
two intersections with overlapping variables, see Figure 1.
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Figure 2. Average loss achieved by different control design
approaches for 30 runs of non-minimum phase system
(24),(25) with α = 1−β. Strategies are: Centralized
(dashed-dotted), Autonomous (dashed), Coopera-
tive with 3 iterations (dotted), Cooperative with 10
iterations (full).

Both centralized and decentralized control strategies were
tested with agents whose internal model is first-order linear
auto-regressive model estimated using Bayesian method,
Peterka (1981). Three different studies were performed:
(i) centralized approach: single agent with full model
(25) whose control strategy was designed with loss (26),
yielding standard LQG solution with receding horizon,
(ii) autonomous approach: the systems was estimated
using two agents: A1 observing variables y1, y2, u1 and A2

observing y2, y3, u2, each modeling its own variables with
corresponding first-order auto-regressive model followed
by LQG synthesis with loss function 26 being marginal
on the modeled variables, and (iii) cooperative approach:
the same agents as in (ii) with cooperative design of the
control strategy (17).

In order to achieve comparable complexity to the au-
tonomous solution, where the predictive density is uncon-
ditional (26), we have projected the multi-step predictor
(3) into the same family, i.e. into the product of uncondi-
tional normal densities. Then, the geometric combination
in (17) is analytically tractable. For example, for the first
agent it holds:

g(y1,τ , y2,τ ) = N
([

µ1

µ2

]
,

[
q1
q2

])
, f(y2,τ ) = N (µτ , qτ ),

gα(y1,τ , y2,τ )fβ(y1,τ ) =

= N

 µ1
αqµ2 + βq2q

αq + βq2

 ,[ q1 q2q

αq + βq2

] (27)

where µτ , qτ , τ = t + 1, . . . t + h is a sequence of mean
values and variances of the communicated predictor, and
µ1, µ2, q1, q2 were chosen to be 0, 1, 0.1, 0.1, respectively, in
(26).

A simulation study was run for horizons h = [1, 5, 10] with
six settings of α = 1−β = [0, 0.2, . . . , 1]. Results of a Monte
Carlo simulation are displayed in Figure 2. As expected,
for α = 1, the loss associated with the cooperative control
are identical to that of the autonomous control. Note that
for horizon h = 10, the cooperative strategy improves the
overall loss for α > 0.2. For horizon h = 1 and some values
of α at h = 3, the cooperative control does not improve
over the autonomous. We conjecture that this is related to
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Figure 3. Average loss achieved by different control design
approaches for 30 runs of minimum phase system
(24),(28) with α = 1−β. Strategies are: Centralized
(dashed-dotted), Autonomous (dashed), Coopera-
tive with 3 iterations (dotted), Cooperative with 10
iterations (full).
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Figure 4. Average loss achieved by different control design
approaches for 30 runs of non-minimum phase system
(24),(25) with α = 1, 0 ≤ β ≤ 1. Strategies are: Cen-
tralized (dashed-dotted), Autonomous (dashed),
Cooperative with 3 iterations (dotted), Coopera-
tive with 10 iterations (full).

the fact that the system (25) is non-minimum phase. For
confirmation we have run the same experiment with the
following minimum-phase system,

θ =

[ 0.7 0.2 0 0 0 0 1.0 0
0 0.5 −0.8 0.2 0.5 0 1.0 1.0
0 0 0 0 0.7 0.2 0 1.0

]
, (28)

ψt = [y1,t−2, y1,t−3, y2,t−2, y2,t−3, y3,t−2, y3,t−3, u1,t, u2,t],
and the results are displayed in Figure 3. Unexpectedly, the
performance is very sensitive to the choice of α = 1− β.

Note that in (27), the coefficient α has the same role as
coefficient q1 of the local loss. Also, by simultaneous change
of the both parameters α and β it is not clear which
parameter is affecting the result. Thus, the same Monte
Carlo study for model (24) was performed with setting α =
1, β = [0, 0.2, . . . , 1] and its results are displayed in Figure
4. Once again, the performance for h = 1 is deteriorating
for this non-minimum phase system, the same experiment
for minimum phase does not suffer from this instability.
Note that in this case, the best performance is achieved
for low values of β. We conjecture that this is due to the
fact that all αs and βs in both agents do not sum to 1.

5. DISCUSSION

The general probabilistic solution (17) was specialized for
Gaussian densities. This experiment serves as a proof-of-
concept experiment to check feasibility of this approach.



Application to more complex models would require far
more work, but the presented approach already demon-
strate the following intuitively interesting properties:

(1) The fully probabilistic formulation unifies parametriza-
tion of predictors and losses which allows to modify
the loss function of the receiving agent by predictor
of its neighbor.

(2) The tuning coefficients α and β have rather clear
meaning: α is a weight of ‘selfish loss’ of an agent,
and β is a weight of the ‘trust’ in the neighbor.

The first property offers an interesting alternative for
optimization, where new heuristics can be designed to
mimic this behavior if different optimization methods are
used. The second property allows for tuning of the control
strategy when needed, however, it is expected that a
default value, say β = 0.2 for the setup in Figure 4 would
be sufficient in most cases.

In situations where computation of predictors for the
whole optimization horizon is computationally prohibitive,
the method can easily handle predictors on shorter hori-
zons, or even one-step-ahead predictors. This may allow
engineers to develop experimental knowledge what needs
to be done similar to that developed for LQG control, e.g.
Böhm et al. (1989).

The current implementation of traffic control, Homolová
and Nagy (2005), is using non-linear state-space model for
each intersection, and linear programming for optimiza-
tion of the control strategy. Application of the presented
approach is possible by changing the coefficients of the
loss function, however, in that case the uncertainty in the
predictions would be neglected. Loss functions which allow
incorporation of higher order moment of the predictors are
not linear. Nevertheless, they can be handled by general
convex optimization methods.

6. CONCLUSION

An approach extending the FPD method of autonomous
control strategy design to cooperative control strategy
design was presented. The approach was derived by ap-
proximation of the global optimal control strategy design,
however, it still should be considered as a heuristics. As
demonstrated in Section 4, performance of the presented
cooperative control of a non-minimum phase system on
a short horizon may be worse than that the autonomous
control. However, the approach has interesting properties
that make it worth of further research. Namely, the coop-
erative control strategy design has indeed only a minor
computational overhead over the autonomous one and
allows to make further simplifications. It provides only a
minimum of tuning knobs with reasonable defaults.

Further research is necessary to improve stability of the
solution—e.g. similar to back-stepping line-search used
in approximate DP (Todorov and Tassa (2009))—and to
investigate convergence and stability of the approach.
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